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DIFFERENCE SCHEME FOR THE "DIRICHLET PARTICLE" METHOD
IN CYLINDRICAL COORDINATES, CONSERVING SYMMETRY
OF GAS~DYNAMICAL FLOW
A. V. Solov'ev and M. Yu. Shashkov UDC 519.63

In the numerical investigation of multidimensional gas-dynamical flow, it is often im-
portant (see {1, 2]) that the difference scheme used not disrupt a one-dimensional property .
of a flow, either as a whole or in separate regioms. The question of the conservation of
various types of flow symmetry in numerical modelling has been investigated in several
articles for certain difference-scheme classes (see, for example, [3-7]1). In some cases it
{s convenient to construct schemes with the required property by using an appropriate co-
ordinate system. However this approach to the development of such schemes is not trivial [6].

We note that the conservation of a one-dimensional property in various coordinate sys-—
tems is practically never considered for methods using irregular meshes [8-15].

We describe a difference scheme of the "pirichlet-particle" type in cylindrical coordi-
nates which conserves plane, cylindrical, and spherical symmetry for gas-dynamical flow. This
scheme is completely conservative.

Conservation of the one-dimensionality of a flow is attained by a special volume formula.

1. We consider first the gas-dynamical equations in rectangular coordinates (x, y) and
the corresponding difference scheme described in (14] in the rectangle E = {xpin<X<Xmin<y<
Ymax}. For definiteness we assume that (W, n) log=0, om the whole boundary, where % is the
external normal to the boundary 3E. We also assume that, initially, all quantities depend
only on x, i.e., o(x, y) [tmo = p(x), p(x, y)lc-o = p(x), etc.; consistency requirements of

initial and boundary conditioms imply that Hy(x)lt-o = 0.

The differential problem with these initial and boundary conditions has a solution of
the form p(x, y, t) = p(x, t), ol{x, ¥y, t) = p(x, t) etc., Wy(x, t) = 0, which we call a one-
dimensional solution in X.

Consider the following difference scheme from [14]:

dp 1 > dWx
dWy de -
Par +GRADyp=0, p—+P DIV W=0,

here Wx = (ﬁ, e;) and Wy = (ﬁ, Zy), and the unit basis vectors ex and Zy are in the directions
of the x- and y-axes, respectively. The difference operators are defined as follows:

= 1 av; avV;
pIv #yi= - 2 (2wt 5= W ). )
¢ ) Vi neld, 0xs * Oy Yr
1 Ve
(GRADp)i=——— P,
- Vi ke, oxi
(GRAD,P) 1 Va p
4 = -7 = FR
! Vi REW, dy;
The volume Vi is chosen to be the area of a Dirichlet cell:
V,=05 3 (Xrst2t+rn-1/2) (Yrar2—Yr-1/2)- (3)

RELI,
1

Direct differentiation yields the following formulas:
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2. We next consider a difference scheme in cylindrical coordinates:

dp 1 il dWr

aWz de -

> -> -+ ->
where Wr = (W, er) and Wz = (W, ez), and the unit basis vectors e; and e; are in the direction
of the r- and x-axes, respectively.

The difference operators are determined as in the rectangular case:

- 1 av, av,
(DIV W),=TZ (—W/rk-f- Wzk),
Vi »¢Pay Oore 0zx
(10)

av

1 h
(GRAD, p), = —T Z‘ ___dr- Px,

RE€Pay '

1 Ve
(GRAD: p), = — v Z Sz Pv

ktpai ¢

In the present work, we consider a scheme (9), (10) in which the volume Vy = riﬁi, is
used, where Vi is the area of a Dirichlet cell in the (r, z)-plane:

L2
V= -5 & (Trtt/2FThe1/2) (Zht1/2—20-172) .
“ #<Paj

Properties of the volume V{ are as follows. Clearly

V. e Vi _ v, (11)
orx =" orx (1524)., 0z =n dz,
and
v, v av, av, (12)
_—0,1 =, drl‘ +Vland 02, =Tr; az‘ .
We prove that
5} (13)
L P
Ti hPai

Relations (11) and (12) imply that

a atT, d
_0 Z Vi=r,; 3 +V}+Z r de . (14)
7y k-Paj ar, *‘Fﬁi T
and, since
07. — aVk
dr, "’fa-i or,
by virtue of (5), it follows from (14) that
7] av (15)
—a—-— Z Ve= V.4 Z (ru—ri) 3 t .
r; *Pa, ”P—ai r

It follows from (4) that (15) can be written as
2 Vet 2 () BT

r = Ix—T
d [l ""P&j_ kPa‘. L3 i

Fett/z4-Tu—1/2

r, Ip—
( r— W) =P+ Z_l_ ri(Zn41/2—2a—1/2) — Z_ (Zr41/2—20~1/2) — s
- *Pa , *Pa; —
The second term in the last expression in (16) vanishes because the rj zan be taken out from
under the summation sign, and the last term is equal to —Vi and cancels the first term.

This proves (13), which implies in particular that
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v, IV n 8
Jr, - Fa Jr. ' (17) cse
i.e., there is a formula similar to (6) for Vy. Hence
;v
av. 5‘ al'y
0z, =gz -
APa‘.
Using (11) and (12), we rewrite the difference operators (10) as
rom
- 1 o oV Wr;
l)lVW|=——Z(—W : W’z) _
( : Vi *Pa, Ory ret 0z, ) ri
_ 1 avs ( Te ) pi
(GRADp) === & () = -
dpal
1 av r
(GRAD: p) = -5 Z W"-(,_—kph),
: "!Pa'- t i
and it follows that ner
(DIV W), = (DIV W);-=Wr./ri, (GRAD: p)i= )
=(1/ri) (GRAD; §):—pi/ri, (GRAD: p)i= (1/r.) (GRAD:p)i
Here DIV and GRAD can be obtained from the corresponding operators in (2) by replacing x apd
y by rand z, respectively. ane

3. Here we consider the problem in the rectangle E{0O<r<rmax, zZmin<z<2zmax}. On the axy,
of symmetry, we assume that Wr|r=o = 0, and we also assume that erl’=1'max =0 and Wz |z=zpax =g,

If all functions depend only on r at the initial time, and Wz|t=° = 0, then the differentis)]
problem has a solution depending only on r. YU

We prove that the difference scheme has an analogous property. InE choose the rectangulyy
mesh, uniform with respect to z, with the mesh points (r,, zj): zj = (j - 0.5)hz, hz=(zm-
Zmin) /Nz, 0<r,;<... rNr. We use the following notation hr, = 2r;; hry = ri -vi-1, i =2, ...,
Nr; hryp+: =2 (rmax —rNr)-It follows from (18) and (8) that (DIV W)ij = (Wri-1)/(hri + hrye,) 4
ri, (GRADyp)ij = (L/ri) (pi+iTi+:1 — pi-1fi-1)/(hrj + hri4s) — pi/ry, and (GRADzP)ij = 0, i.e., “
there is r-one-dimensionality.

To prove that the scheme is one-dimensional with respect to z, we use a rectangular mesh, ‘o0
uniform with respect to r, and impose the appropriate boundary conditions. Since Wrjj =0,
the expression for DIV in this case coincides with (8) for the same operator with y replaced
by z and the assumption that Wxij = O. Hence it follows from Sec. 1l that (DIV W ij = Sj.

Since pij = TijPij and by virtue of the assumption that rjj = rj and pjij = pg, we conclude
that pij = pj. It therefore follows from Sec. 1 and the last formula in (18) that (GRADgp)i: '
Gj. It remains to prove that (GRAD.p)ij = O.

nere

Using (17) in (10), we obtain ST

Vi aVi-
(GRAD, p)ij= — d—,'l— (pi+l—pi)+_#' (Pi-1—pj) ]/Vﬁ-
i) ij Aat

The required relation now follows from relations (11), 3\713+1/ rij = 0, and Wij~s/ riy = 0.

This proves that our difference scheme conserves the one-dimensionality of gas—dynamical
flow with respect to z and r.

4. We now consider the scheme (9), (10) for spherically symmetric flow. In the (r, z)-
plane, we introduce a polar mesh, uniform with respect to the angle. The coordinates of the

mesh points are as follows:
rij=R; sin 8;, 8:= (i—0.5)A6; 1%

Zi})=R/ cos el'. A9=0.531/Ne.

here Ry 1s the spherical radius of a point; 8. is the angle measured from the z-axis. We a#°
sume that, at the initial time, pjj = Pj» €ij = €j, P1j = Pj, WOij = —cos @iWrij + sin L
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», and WRij = sin 64Wrjj + cos eiw'zij = U and that appropriate boundary conditions are im-
osed. We wish to prove that these conditions are satisfied at each instant of time, i.e., that

—c0s 8: (GRAD: p)i;+sin 8. (GRAD: p);;=0, sin 8:(GRAD: p)i;j+ cos 8.{GRAD, p):;=G;, (DIV W),-,-=DJ._ (20)

y virtue of our assumptions, the operator GRAD is defined as follows:

(7V,-,~+1 !J 1 ]
r = — j-1—Fj Vi H
(GRAD: p) [ or (pj+1— P/)+ (Pi-i—p;) | /Vis (21)
avi; ,
{GRAD. p)i;= —[ a;_fi (pix1—p;) + (Pi-1—p3) ] /Vi;.
rom (11) and (19) we conclude that N
Vi, GV,','.H i 0V.j+1
0r,, =Tij+1 dr,-, =R,'+1 sin ©; arii s
aV,;.-_, . aV;’i—i 0Vij+1 . aVii+l
o = Rj_1sin 8; o, T az; =Rj4i sin 6,-—627—,
oVij— , Vi1
2 =R;_.sin 8; oz
here Vij = Rysin ©;-Vij = Ry sin 84°V4y. Hence relations (21) can be written as
1 dV, 6V.
(GRADr p)ir= — = | =572 (Ri (Prta—p1)) + —5 (R,_,<p,-,_p,))] (22)
l aV; V:
(GRADp)ij=— R,V dz:-,-H (Rist(Ps1—P))) + —~— ! (Ri~1(pj- l—P:))]

.ence, since p; and R4 are arbitrary, the first relation in (20) is satisfied only if
3 3

avii+i . 0Vt . v oV (23)
_37,-,-_—'*'5'"9‘ oz, =0, —cos 8; are +sin 8 32, =0.

—C0s 6;

'y using the formulas

ae=2""[(2x—2)) (r},, —r? +2, | —2!)—(2eri—2)) (r%—r2 +22—22)]/Fussa,

ind ey =2"[{ri—n) (r*, =13 +2}  —22)—(ri—ren1) (r2—r? 422 —2%)]/Fasipe,
4
Franp= (2v—20) (resi—ti) — (2ani—20) (1a—r) 29

rom [l4], we can prove that

OV - Ris1/e sin Bit1/2—sin Bi-1/2 ( . Sin Git+1/2+5in Bi—y/2 )

ar.  =¢ AR ) R, sin 8i—aR;+1/2 5 , (25)
OV Riyi €08 Bi1/2-—C0Ss Bit1/2 (R- 8.—aR €08 Bi+1/2-+C0S Bi—1/2 )

oz, " Rua—R, sin ©; ;€08 Bi—aR 4112 > ),

here Rijqy,/2 = (R + Rig1)/2, Oi+1/a = (64 + ©441)/2, and a = cos~2(468/2). Applying known
:rigonometric relations in (25), we conclude that the first identity in (23) 1is satisfied.

Relations (22) imply that, to establish the second identity in (20), we need only prove

‘hat
. 0Piia 0Piin
P . =Gt
sin 8, o +cos 8; dz., G/' (26)
OV tl 1
—_ (72
sin @, ——— dr,, +cos 6; dz,, —G,-
4¢ now use the following formulas, analogous to formulas (25):
a‘-'u-... R,.H/z €0s 8,-1/2—c0s 8i+l/2 ( . sin 8,’+|/z+5in Bi-1/2 )
= . R| ei— R 2
o, T ®R.—R . sne SIS aRisy 2 '
o AR Rivizz  sin@up1/2—sin Bi_y/z ( €05 Bi41/2+COS Bi-yy2 )
—= - R, cos 8;—aR; .
o a - vy cos 8i—akR ;2 2



This yields G} = a(RJ’+;/z/(RJ’+1 - RJ-))(R.? - 2'1aRj.H/zsin 48). The second formula in (26) Can pq

proved similarly.

We next prove that (DIV ﬁ)ij = Dj when Wrjy = sin @i «Uj and Wzjj = cos 8;°Uy, ile., O
is in the direction of the radius vector. From the first formula in (18), we obtain

o

- 1 [ av;, L av.. .- . L V., .
(DIVW),= A ari (Ujei—U,)sin 8, + I (U —U)cos 8, + g (U-—U)sin@.4 an
av, , , av., ) .
t+~s— (Uj=1—U,)cos 6, + (sin®..,—sin®) U, +
(.)Z,A-l ri—y;
av av.,

(sin Bip1—sin©,) U +

"" - (€05 8._;—cos 8;) U .+~

i—, t+1

L

Vi Oi+1—c0s O U] Y

Iy (ces Bi+1—cos B,) U, +R, .
-

The last term in (27) depends only on j; hence, to prove that (DIV w)ij = Dy, 1t is sufficien,

to establish that the expression in square brackets depends only on j, Since DIV is a linear

operator, it is sufficient to consider separately the cases Uj =1, Uy =0, k*j etc., and

this leads to the following conditions:

A2 avy
DY = - sin 6+ cos 6,=D!,
i Orije1 02341 !
ovii ovi;
2 = 5 i =D?
D T sin 8+ e cos ©,=D?,

DU 4D% 403 =D} +D% + =0 (5in 6, —sin 04
1) ! i |j— 3] ij dri—l/’ i—1 sl

ovii aVii thi
—t—C ; in ©;11—sin 6; c0s 8,41—cos 8,) =D*
7y (cos 8,—+—cos 8;) +- s (sin Qi41—sin 8;) + Ozrms, ( + ) 4

The first two identities can be obtained from (26) by a translation of the indices with re-
Spect to j; to prove the last relation, it is sufficient to show that Dij depends only on j,

From (22) we obtain

9%ii @ (Ri12—Rj—1/2)cos Bz (R in®, N ©ssry D2t R )
O R $in ©s1—sin B; P SIR BT sin Bz 2

avi, @ (Rix2—Rj-12)sin Bity/2 ( _ ~Ricy2 R )
T = R_, Y ——- R; cos Biy1—a cos Bivi)2 2

and similar formulas hold for aVij/Bri-;j and 8‘711/321_;_-]. It can now be directly verified
that Dij = 2a(Rj+1/2 —Rj-1/2)sin(48/2) = D}, which is the required result.

We have proved that all conditions in (20) are satisfied, and so our difference scheme
conserves the spherical symmetry of the flow.

Examples of test problems verifying our theoretical results can be found in [15].

The authors take this opportunity to thank A. A. Samarskii for his interest in this
work, and A. P. Favorskii and V. F. Tishkin for their valuable discussions of our results,
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SECOND-ORDER DIFFERENCE SCHEME FOR GAS-DYNAMICS EQUATIONS
WITH A CONSISTENT APPROXIMATION OF CONVECTIVE FLOWS

S. I. Tkachenko UDC 519.63

1. Introduction. We investigate a method of solving gas-dynamics problems introduced
in [1, 2], using difference schemes with consistent approximation of convective flow. The
flow is described in Euler variables. Consistency of approximations of flows is, in particu-
lar, an element in the construction of completely conservative difference schemes (c.c.d.s.)
and imposes rather stringent restrictions on the form of the difference equations, This
decreases the range of possible improvements in the quality of the corresponding algorithms.
One way of improving c.c.d.s. is to raise the order of approximation of convective flows
while conserving the condition for their consistency. We use this method.

2. Original Equations. In a domain D(x, y)€R?, with x, y rectangular coordinates, we
consider the following equation system describing nonstationary flow of a compressible heat-
conducting viscous medium, closed by the equation of state P = (y — 1)pe of a perfect gas:

Op/0t+div (pV) =0, 1)
dpV/0t+div(pV@V) = —grad P+div d,
Ope/0t+div (pe- V) = —P div V-div(xgrad e) +R.

Here ;(u, v) is the velocity; p is the density; P is the pressure; ¢ is the specific internal
energy; d is the viscous-stress tensor; R is the energy release cauggd_py the action of vis-
Cosity; y is the adiabatic exponent; » 1is the thermal conductance; V@V 1is a direct product

of vectors.
We consider an initial boundary-value problem for (1) in D.
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